
Am. J. Hum. Genet. 64:578–585, 1999

578

Brachydactyly Type B: Linkage to Chromosome 9q22 and Evidence for
Genetic Heterogeneity
Michael Oldridge,1 I. Karen Temple,4 Heloisa G. Santos,5 Richard J. Gibbons,2 Zehra Mustafa,3
Kay E. Chapman,3 John Loughlin,3 and Andrew O. M. Wilkie1,2

1Institute of Molecular Medicine, John Radcliffe Hospital, 2Department of Clinical Genetics, Churchill Hospital, and 3Osteoarthritis Genetics
Group, Wellcome Trust Centre for Human Genetics, Oxford; 4Wessex Clinical Genetics Service, The Princess Anne Hospital, Southampton,
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Summary

Brachydactyly type B (BDB), an autosomal dominant
disorder, is the most severe of the brachydactylies and
is characterized by hypoplasia or absence of the terminal
portions of the index to little fingers, usually with ab-
sence of the nails. The thumbs may be of normal length
but are often flattened and occasionally are bifid. The
feet are similarly but less severely affected. We have per-
formed a genomewide linkage analysis of three families
with BDB, two English and one Portugese. The two
English families show linkage to the same region on
chromosome 9 (combined multipoint maximum LOD
score 8.69 with marker D9S257). The 16-cM disease
interval is defined by recombinations with markers
D9S1680 and D9S1786. These two families share an
identical disease haplotype over 18 markers, inclusive of
D9S278–D9S280. This provides strong evidence that
the English families have the same ancestral mutation,
which reduces the disease interval to !12.7 cM between
markers D9S257 and D9S1851 in chromosome band
9q22. In the Portuguese family, we excluded linkage to
this region, a result indicating that BDB is genetically
heterogeneous. Reflecting this, there were atypical clin-
ical features in this family, with shortening of the thumbs
and absence or hypoplasia of the nails of the thumb and
hallux. These results enable a refined classification of
BDB and identify a novel locus for digit morphogenesis
in 9q22.
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Introduction

Brachydactyly (derived from the Greek meaning “short
fingers”) occurs in diverse congenital disorders, either as
an isolated malformation or with other skeletal mani-
festations. A search for this term in OMIM produces
138 entries. The classification of the isolated brachy-
dactylies was proposed originally by Bell (1951), who
analyzed 124 dominantly inherited pedigrees and placed
them into five types, A–E, on the basis of the pattern of
digit malformation. A later reappraisal by Fitch (1979)
led to substantial reclassification, but the type B form
remained a distinct entity.

Brachydactyly type B (BDB; MIM 113000) is the most
severe of the inherited brachydactylies and exhibits rel-
atively little overlap with the other groups. The first
report of BDB, in the medical literature, was of a family
from Uxbridge, west London, in which 10 affected gen-
erations were described. A letter from Mr. L. to Dr. Kellie
states: “On examining their hands, the thumbs only ap-
peared perfect; instead of fingers, they had only the first
phalanx of each finger, and the first and second of the
ring-finger of the left hand. The fingers had no
nails”(Kellie 1808, p. 252). Detailed clinical and radi-
ological studies were reported by MacArthur and
McCullough (1932), in a three-generation Canadian
family known to originate from southern England. These
authors termed the disorder “apical dystrophy,” reason-
ing that the terminal phalanges are absent and that the
middle phalanges may adopt the appearance of the ter-
minal phalanges. Several other facts also point toward
this conclusion and are reviewed by Fitch (1979). Over-
all, BDB is characterized by hypoplasia or complete ab-
sence of the terminal phalanges of the index to little
fingers, with frequent shortening or absence of the mid-
dle phalanges and with absent or hypoplastic nails. The
thumbs are less severely affected but can be broad and
flattened and sometimes have bifid or duplicated ter-
minal phalanges. The feet are similarly affected, but to
a lesser degree. The severity varies among individuals,
but the limbs tend to be symmetrically affected. Other
features can include soft-tissue syndactyly and sym-
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Figure 1 Partial pedigrees of families 1–3, showing individuals
from whom samples were collected (identified by numbers). Affected
individuals are denoted by blackened symbols.

phalangism. A particular facial appearance, including a
prominent nose with a bulbous or beaked tip, hypo-
plastic alae nasae, and a short philtrum was suggested
by Houlston and Temple (1994) and Santos (1995), in
families of English and Portuguese origin, respectively.
BDB generally occurs as an isolated malformation but
in Sorsby syndrome is associated with macular colo-
boma (Thompson and Baraitser 1988).

There have been no reports of molecular genetic stud-
ies of BDB, although two loci have been identified in
syndromic brachydactyly and two in isolated brachy-
dactyly. Brachydactyly with hypertension has been
linked to chromosome 12p (Schuster et al. 1996), and
deletions of 2q37 have been identified in brachydactyly
with mental retardation (Wilson et al. 1995). Linkage
of two loci to brachydactyly type C has been described,
at 12q24 (Polymeropoulos et al. 1996) and 20q (Polin-
kovsky et al. 1997). Cartilage-derived morphogenetic
protein 1 (CDMP1), a member of the transforming
growth-factor b (TGFb) superfamily, maps to 20q, and
mutations of this gene have been identified in unrelated
families with brachydactyly type C (Polinkovsky et al.
1997). This, however, remains the only causative gene
identified for any of the isolated brachydactylies.

To elucidate the molecular basis of BDB, we per-
formed a genomewide linkage analysis of the English
and Portuguese families described by Houlston and Tem-
ple (1994) and Santos et al. (1981), respectively, together
with a large unpublished English family. We present ev-
idence that both of the English families show linkage to
chromosome 9q22 and are in fact related, but the Por-
tuguese family is excluded, indicating that BDB is ge-
netically heterogeneous.

Subjects and Methods

Subjects

Approval for the study was obtained from the Central
Oxford Research Ethics Committee, and informed con-
sent was given by participating family members. Partial
pedigrees of the three families analyzed in this study are
shown in figure 1 (only individuals who gave samples
and their intermediate relatives are shown). In family 1,
which, until now, has been unpublished, samples were
obtained from 13 affected individuals and from 7 un-
affected offspring at 50% a priori risk. The affected
individuals had the classic manifestations of BDB, in-
cluding hypoplasia and anonychia of digits 2–5 and nor-
mal, broad, or bifid thumbs with normal or split thumb
nails. These manifestations were associated with mild
facial changes, notably a prominent nose with a bulbous
tip. Four individuals had undergone hand surgery. One
of these, patient 6, manifested a severe phenotype with
a bifid distal phalanx of digit 1 and soft-tissue syndactyly

of digits 3 and 4 (fig. 2). The deceased, affected mother
of individuals 2, 9, and 15 originated from Manchester,
England. Family 2, described by Houlston and Temple
(1994), comprised nine affected individuals and two un-
affected offspring and originated from Lincolnshire,
England. This family also displayed the classic pheno-
type of BDB, including a prominent nose with a bulbous
tip, wide-spaced eyes, and a short philtrum. High-res-
olution cytogenetic analysis of one affected person (pa-
tient 2) was normal (46,XY). Family 3 resides in Por-
tugal and comprised seven affected individuals and one
unaffected individual. This family was described by San-
tos et al. (1981) and Santos (1995) as affected with BDB
with absence of the nails. The affected members had a
phenotype suggestive of BDB, but, in some individuals,
the fingers were relatively mildly affected with nail hy-
poplasia yet the thumbs always showed complete ab-
sence of the nails and the great toes showed absence or
severe hypoplasia of the nails. There was also an asso-
ciation of a characteristic facies with a prominent beaked
nose. High-resolution cytogenetic analysis of one af-
fected person (patient 5) was normal (46,XX).

Genotyping

Peripheral blood samples were obtained from all in-
dividuals except those numbered 22–27 in family 1,
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Figure 2 Preoperative appearance of hands of patient 6 from
family 1. A, Clinical phenotype at age 1.5 years. B, Radiological fea-
tures at age 8.5 years. The middle and terminal phalanges are either
completely absent or are replaced by a single rudimentary bone. In
the right hand, there is some soft-tissue syndactyly between digits 3
and 4, and the terminal bone of digit 4 is displaced radially. Both
thumbs are very broad and have duplicated terminal phalanges.

from whom buccal cells were obtained from mouth
swabs. Genomic DNA was prepared from blood samples
by standard phenol/chloroform extraction and from
buccal samples by the Puregene Buccal DNA Isolation
Kit (Gentra Systems). We genotyped subjects, using a
standard set of 270 highly polymorphic microsatellite
markers at an average interval of 25 cM (Davies et al.
1994; Reed et al. 1994). The markers were amplified in
microtiter plates in a volume of 15 ml. Each reaction
contained 50 ng DNA, 0.4 units Taq Gold polymerase
(Perkin-Elmer), 5–15 pmol each of forward and reverse
primer (one of which carried a fluorescent label), and a
final Mg2� concentration with a range of 1–3 mM. Am-
plification products were electrophoresed through 6%
acrylamide by an Applied Biosystems 377 Automated
DNA Sequencer, as described by Reed et al. (1994). Al-
leles were sized by Applied Biosystems’ GENESCAN
(2.0.2) and GENOTYPER (1.1). After the initial linkage
was found, we performed manual genotyping, using
Généthon and Cooperative Human Linkage Center

(CHLC) markers (Research Genetics) from the sur-
rounding region (Sheffield et al. 1995; Dib et al. 1996).

Linkage Analysis

Two-point LOD scores between the disease locus and
markers were calculated by MLINK of the FASTLINK
4.0 software package (Lathrop and Lalouel 1984; Cot-
tingham et al. 1993; Schaffer et al. 1994). The disease
was specified to be an autosomal dominant trait with a
disease-allele frequency of .00001. Two liability classes
were defined: in the first, which contained affected in-
dividuals and normal spouses, the disorder was specified
to be fully penetrant, and in the second, which contained
phenotypically normal offspring at 50% risk, the dis-
order was given a penetrance of .99. The allele frequen-
cies for each marker were assumed to be equal, as were
the recombination frequencies in males and females.

We performed multipoint analyses, using the LINK-
MAP program of the FASTLINK package. Marker or-
ders and distances were taken from the Généthon linkage
map (Dib et al. 1996). Markers D9S15, D9S1680,
D9S257, D9S1796, D9S1809, D9S1786, and D9S118
were used, with intermarker recombination fractions (v)
of .232, .024, .053, .074, .011, and .40, respectively.
Because of computer memory constraints, the number
of alleles had to be reduced: two-point analyses were
performed with the renumbered alleles, to check that the
LOD scores between the disease locus and the markers
were unchanged. Sequential five-point analyses were per-
formed as described by Terwilliger and Ott (1994). Iden-
tification of the disease haplotype, with use of Généthon
and additional CHLC markers (D9S906, D9S318), was
performed manually. Marker order and intermarker dis-
tances (in cM) were based on data of Dib et al. (1996)
and the Whitehead/MIT STS map (Hudson et al. 1995).
We note that conflicting marker orders for the
D9S196–D9S287 region have been published elsewhere
(Povey et al. 1997; Xie et al. 1997; Blair et al. 1998).

Results

Two-Point Linkage Analysis

After we conducted the initial genomewide screen, we
found that only one marker was strongly suggestive of
linkage. D9S176 gave LOD scores for families 1, 2, and
3 of 2.28, 1.80, and ��, respectively, at (the com-v � 0
bined LOD score for families 1 and 2 was 4.08). Other
markers from the surrounding region were analyzed, and
a maximum LOD score (Zmax) was obtained for marker
D9S257 (family 1, at ; family 2,Zmax � 4.79 v � 0

at ). This resulted in a combinedZmax � 2.40 v � 0
for families 1 and 2, but family 3 stillZmax � 7.19

showed a LOD score of �� at and thereforev � 0
seemed unlikely to show linkage to the same locus as
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Table 1

Two-Point LOD Scores between BDB and Chromosome 9 Markers

LOD SCORE AT v �

MARKER

AND FAMILY .0 .01 .05 .1 .2 .3 .4

D9S15:
1 and 2 �� �3.72 �1.25 �.29 .36 .40 .22
1 �� �2.91 �1.08 �.35 .16 .22 .12
2 �� �.81 �.17 .06 .20 .18 .10
3 �� �2.65 �1.31 �.77 �.31 �.11 �.02
D9S1680:
1 and 2 �� 2.05 2.49 2.45 2.05 1.47 .78
1 �� .87 1.38 1.44 1.24 .89 .47
2 1.20 1.18 1.11 1.01 .81 .58 .31
3 �� �2.00 �.92 �.48 �.15 �.04 �.01
D9S257:
1 and 2 8.39 8.26 7.72 7.02 5.54 3.80 1.95
1 5.99 5.90 5.52 5.03 3.96 2.76 1.43
2 2.40 2.36 2.20 1.99 1.54 1.04 .52
3 �� �1.96 �.88 �.45 �.12 �.03 �.00
D9S1796:
1 and 2 6.89 6.78 6.34 5.75 4.48 3.08 1.56
1 4.79 4.72 4.42 4.02 3.15 2.18 1.12
2 2.10 2.06 1.92 1.73 1.33 .90 .44
3 �� �1.96 �.66 �.18 .15 .21 .14
D9S1809:
1 and 2 6.33 6.24 5.81 5.25 4.07 2.75 1.35
1 5.13 5.05 4.69 4.23 3.25 2.17 1.03
2 1.20 1.19 1.12 1.02 .82 .58 .32
3 �4.45 �1.16 �.50 �.25 �.06 .00 .00
D9S1786:
1 and 2 �1.61 3.47 3.77 3.56 2.81 1.90 .97
1 �3.41 1.71 2.17 2.17 1.83 1.32 .71
2 1.80 1.76 1.60 1.39 .98 .58 .26
3 �4.40 �.95 �.30 �.07 .09 .11 .07
D9S118:
1 and 2 �� �7.99 �4.18 �2.52 �1.05 �.39 �.09
1 �� �3.95 �2.05 �1.20 �.47 �.16 �.04
2 �� �4.04 �2.13 �1.32 �.58 �.23 �.05
3 �5.23 �1.54 �.78 �.46 �.18 �.06 �.01

families 1 and 2. After this linkage was discovered, four
more meioses from family 1 (subjects 22, 24, 26, and
27) were obtained, and the Zmax was increased to 5.99,
with marker D9S257, giving a combined Zmax, for fam-
ilies 1 and 2, of 8.39 at . Table 1 shows the two-v � 0
point LOD scores for critical markers across the linked
region, for families 1–3 and families 1 and 2.

The disease interval for family 2 was defined by re-
combinations in affected individuals 2 and 8, with mark-
ers D9S15 and D9S118, respectively, as indicated by the
LOD scores of �� at . This spans a region 140v � 0
cM and encompasses 33 markers with positive LOD
scores at ( at D9S283). The resultsv � 0 Zmax � 2.70
for family 1 reduced this interval significantly. Recom-
binations in affected individuals 16 and 2, with markers
D9S1680 and D9S1786, respectively, reduced the dis-
ease interval to 16 cM, including 21 markers with pos-
itive LOD scores at ( at D9S257).v � 0 Zmax � 5.99
At D9S1786, patient 2 inherited, from her deceased
mother, the opposite allele compared with patients 9 and
15. The linkage program allowed for the possibility of
the mother being homozygous and transmitting the dis-
ease on both alleles; hence, the LOD score at wasv � 0
�3.41 rather than ��. Homozygosity is very unlikely,
because there was no history of consanguinity, and be-
cause the mother was reported to have had a typical
BDB phenotype and gave birth to four unaffected chil-
dren. A recombination event in patient 2 is a more prob-
able explanation. Family 3 gave negative LOD scores at

, for all markers analyzed between D9S15 andv � 0
D9S118, but could not confidently be excluded by use
of two-point analysis in this region.

Multipoint Linkage Analysis

Results from the sequential five-point analyses are
shown in figure 3 for families 1–3 and families 1 and 2.
The Zmax for family 1 remained at 5.99, but the multi-
point LOD score for family 2, across the interval
D9S257– D9S1786, was increased, from 2.40 to 2.70.
This gave a Zmax, for families 1 and 2, of 8.69 at D9S257.
The phenotype appeared fully penetrant in these two
families, since all unaffected offspring at 50% a priori
risk inherited the low-risk allele. Between D9S1680 and
D9S1786, the interval within which the disorder was
mapped in families 1 and 2, the multipoint LOD score
for family 3 did not rise above �1.8, indicating that
localization of the disorder within this region is highly
unlikely, in family 3.

Common Disease Haplotype

It was noted that families 1 and 2 inherited the same
size disease-associated allele, for a large number of mark-
ers. On further analysis, it was found that they shared
a common disease haplotype spanning 18 markers

bounded by D9S257 and D9S1851, which were the first
markers not to share the same size disease-associated
allele (table 2). On the basis of published heterozygos-
ities, the probability of this observation occurring by
chance is !10�9. This provides strong evidence that fam-
ilies 1 and 2 share a common ancestor and reduces the
disease interval to !12.7 cM between these markers.
Comparison of marker positions in the Genetic Location
Database indicates that the disorder maps within chro-
mosome band 9q22, because multiple markers lying
both centromeric and telomeric to the candidate interval
have been mapped within this band (Collins et al. 1996).

Discussion

Phenotypic and Genetic Heterogeneity in BDB

We have mapped BDB, in two of three families, to a
locus in chromosome 9q22, which we designate
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Figure 3 Multipoint LOD scores for families 1–3 and families 1 and 2, between BDB and markers D9S15, D9S1680, D9S257, D9S1796,
D9S1809, D9S1786, and D9S118. D9S15 is set at map position 0.

“BDB1.” The disease interval initially was defined by
recombinations at markers D9S1680 and D9S1786, for
family 1. However, family 3 has, within this region, a
peak multipoint LOD score of �1.8 and is therefore
almost certainly excluded (fig. 3). The phenotype of fam-
ily 3 resembles that of families 1 and 2, and it was
suggested previously that families 2 and 3 share a similar
facial appearance (Santos 1995). However, affected
members of family 3 consistently exhibit complete ab-
sence of nails on the thumbs and absence or severe hy-
poplasia of the nails on the great toes. The terminal
phalanx of the thumb is never bifid but frequently is
reduced in size. The thumbs and great toes of affected
individuals in families 1 and 2 all possess nails, the only
defect being broadening of the terminal phalanges, with
occasional phalangeal duplication and/or splitting of the
nail. Family 3 therefore defines a new subset of BDB,
one that is genetically and phenotypically distinct. How-
ever, the relatively small size of the available family pre-
cludes an independent disease localization.

A Locus for BDB in 9q22

The observation that families 1 and 2 share a common
disease haplotype that spans 18 markers, D9S278–
D9S280 (table 2), provides strong evidence that the two
families are related. If this is assumed, then the disease
locus lies within the shared haplotype interval bounded
by markers D9S257 and D9S1851 (!12.7 cM). No
known genealogical relationship exists between these
families, for at least two generations back from the ped-
igrees illustrated in figure 1. However, it is of note that
founder individuals of these families originated from
Manchester and Lincolnshire in England, because fam-

ilies with BDB that have originated from both regions
have been described elsewhere. Thus, the six-generation
family described by Wells and Platt (1947) came from
Manchester, and both the seven-generation family de-
scribed by MacKinder (1857) and the-five generation
family described by Cragg and Drinkwater (1916) were
from Lincolnshire (MacArthur and McCullough 1932).
The two earliest descriptions of BDB (Kellie 1808;
MacKinder 1857) independently recount a very similar
legend concerning the origins of the disease (the legend
involves the theft of a clergyman’s apples by his pregnant
wife), suggesting that these two families were also re-
lated. Combining the historical record with our finding
of a conserved haplotype between two major branches
of this family, we speculate that most or all of the English
families with BDB share an ancestral mutation. Sup-
porting this is our confirmation that families 1 and 2
share the same disease alleles, for nine consecutive mi-
crosatellite markers (D9S1836–D9S197), as the two
BDB families investigated independently by Gong et al.
(1999 [in this issue]) (M. Oldridge and A. O. M. Wilkie,
unpublished data). It is unlikely that the mutation is
unique, however, because, in three other families, from
Germany, the United States, and Mexico, segregating a
classic BDB phenotype, the malformation is reported to
have arisen de novo (Degenhardt and Geipel 1954; Bass
1968; Cuevas-Sosa and Garcia-Segur 1971). Investiga-
tion of individuals from these and other independent
families will be important in distinguishing between mu-
tations and polymorphisms within candidate genes in
9q22.

In the evaluation of candidate genes for BDB1, the
possible pathophysiological mechanisms of the limb ab-
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Table 2

Disease Haplotype of Families 1 and 2

RECOMBINATION

FRACTION

(CM)

DISEASE-ASSOCIATED

ALLELE SIZE

(BP)

MARKER Family 1 Family 2

1.6 D9S1812 254 260
2.4 D9S1680 211 211
2.6 D9S257 267 271
0.0 D9S278 269 269

D9S906b 1 1
1.1 D9S283 189 189
0.0 D9S1820 180 180
1.1 D9S1797 240 240

D9S318b 2 2
0.5 D9S1836 205 205
0.4 D9S1796 148 148
2.8 D9S1842 147 147
0.1 D9S1781 146 146
0.0 D9S1841 206 206
1.2 D9S1815 228 228
0.6 D9S1803 164 164
0.1 D9S196 258 258
0.1 D9S1689 90 90
0.6 D9S197 211 211
0.1 D9S1816 151 151
1.4 D9S280 158 158
0.0 D9S1851 147 145
0.0 D9S287 174 170
1.1 D9S1809 137 125

D9S1786 206 202

a Allele sizes of shared disease haplotype are underlined.
b Alleles for CHLC markers D9S906 and D9S318 are numbered

arbitrarily. Recombination fractions are not given for these markers.

normality need to be considered. We entertain three sce-
narios: (1) premature truncation of limb outgrowth, (2)
inappropriate apoptosis of cells within the digital rays,
and (3) disruption caused by terminal blebs. Outgrowth
of the limb is determined by epithelial-mesenchymal in-
teractions, in which key roles have been demonstrated
for the fibroblast growth factor (FGF) and bone mor-
phogenetic protein (BMP) signaling pathways (Niswan-
der and Martin 1993; Hogan 1996). Removal of the
apical ectodermal ridge (a morphologically distinct ep-
ithelium at the limb tip) causes limb truncations that are
restored by placement of FGF beads (reviewed by Martin
1998), and mutation of FGF receptor 3 (FGFR3) was
demonstrated in craniosynostosis associated with brach-
ydactyly (Glass et al. 1994; Moloney et al. 1997). Al-
teration of BMP signaling by overexpression of wild-
type or dominant-negative BMP receptors can lead to
digit truncation (Zou and Niswander 1996), as can im-
plantation, at the tip of the digit, of a bead soaked in
noggin protein, a BMP antagonist (Merino et al. 1998).
Mutations in Gdf5 have been described in brachypodism
in mice, in which the length and number of bones in the
feet are reduced (Storm et al. 1994). Gdf5 is a member

of the TGFb superfamily and is the mouse orthologue
of CDMP1, mutated in brachydactyly type C (Polin-
kovsky et al. 1997).

The brachydactyly phenotype could be caused by mu-
tations in these or related genes involved in the final
stages of digit formation, leading either to truncated out-
growth or to normal outgrowth followed by ectopic cell
death. In support of the latter theory are observations
of apparent amputation scars at the ends of the digits
(MacArthur and McCulloch 1932; Battle et al. 1973).
Alternatively, as discussed by Fitch (1979), the prema-
ture truncation of outgrowth could be caused by limb
blebs. Various limb defects are observed in the blebs (my)
and other blebbed mice (Carter 1959, Winter 1990), and
one could imagine that the displaced terminal bone in
digit 4 of the right hand of the patient illustrated in figure
2 might result from this mechanism. However, the usu-
ally symmetrical pattern of limb defects in BDB argues
against defects arising by a stochastic process.

The disease interval that we have defined for BDB1
maps to 9q22 and extends over a relatively wide region
of 12.7 cM. No other limb anomalies map to this region.
It seems unlikely that the disorder arises by a dosage
effect, because brachydactyly is not a feature of either
monosomy or trisomy of 9q22 (Farrell et al. 1991; Pfeif-
fer et al. 1993; Kroes et al. 1994; Lindgren et al. 1994).
Three genes (CTSL, FACC, and PTCH) that have been
localized to the disease interval and that also have been
mapped in the mouse are all located on mouse chro-
mosome 13, suggesting that this represents the major
segment of conserved synteny (Stephenson and Lueders
1998); TMOD and XPA lie just distal of D9S280 and
have been mapped to mouse chromosome 4, which
therefore may provide a small contribution (Mock and
Hirano 1998). The only mouse-limb mutant gene that
maps to either of the predicted homologous regions is
mdac, a modifier of the dactylaplasia phenotype, on
mouse chromosome 13 (Johnson et al. 1995).

Among potential candidate genes mapping to 9q22,
the most obvious is TGFBR1, the TGFb receptor type
1 (Pasche et al. 1998). However, radiation hybrid map-
ping places it between D9S287 and D9S277 (Unigene
map; Schuler et al. 1996), 11.4 cM telomeric to the
BDB1 disease interval on the Généthon linkage map
(Dib et al. 1996), indicating probable exclusion. Unigene
has mapped 140 distinct transcripts, including 13 known
genes, to the BDB1 disease interval. One possible can-
didate is osteoglycin, a gene that is of unknown function
and that contains leucine-rich repeats. Orthologous
bovine, human, and mouse cDNAs were isolated from
osteoblasts, osteosarcoma cell lines, and limb buds,
respectively (Madisen et al. 1990; Ujita et al. 1995).

If such initial candidates are excluded, it will be nec-
essary to refine the localization of BDB1 before posi-
tional cloning can be attempted. It may be possible to
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undertake this quite efficiently, by the ascertainment of
other BDB families of English origin and the identifi-
cation of a more narrow region that shows conservation
of the disease haplotype. This should lead eventually to
novel insights into normal acral-limb morphogenesis.
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